Calculates the force subjected to a body during a shockload event for the following cases:
Variable | Description | Unit |
---|---|---|
$m$ | mass | pounds |
$l_{fall}$ | Falling distance | in |
$d$ | Stopping distance | in |
$F_{shock}$ | Force due to shockload | lbf |
$$ F_{shock} = m \, \left( \frac {l_{fall}}{d} + 1 \right) $$
Variable | Description | Unit |
---|---|---|
$m$ | mass | pounds |
$l_{fall}$ | Falling distance | in |
$d_{rope}$ | Diameter of wire rope | in |
$l_{rope}$ | Length of wire rope | ft |
$x$ | Wire rope area factor | unitless |
$E$ | 15,000,000 | psi |
$F_{shock}$ | Force due to shockload | lbf |
$$ F_{shock} = \left( 1 + \sqrt { 1+ \frac { 2 \, l_{fall} \, E \, x \, d_{rope}^2} { 12 \, m \, l_{rope} } } \right) $$
Type | Factor |
---|---|
7x7 GAC | 0.471 |
7x19 GAC | 0.472 |
6x19W, fiber core | 0.416 |
6x19W, IWRC | 0.482 |
6x36WS, fiber core | 0.419 |
6x36WS, IWRC | 0.485 |
8x19W, fiber core | 0.366 |
8x19W, IWRC | 0.497 |
Variable | Description | Unit |
---|---|---|
$m$ | mass | pounds |
$l_{fall}$ | Falling distance | in |
$l_{rope}$ | length of rope | ft |
$F_{rope}$ | force required to acheive manufacturer’s stated rope stretch | lbf |
$y$ | elongation | percentage |
$F_{shock}$ | Force due to shockload | lbf |
$$ a = \frac {0.005 \, y \, l_{rope} }{F_{rope}} $$
$$ b = -2 \, a \, m $$
$$ c = \frac {-m \, l_{fall}}{12} $$
$$ F_{shock} = \left( \frac { -b + \sqrt {b^2 - (4 \, a \, c)}} {4 \, a} \right) $$
Understanding shock Loads. Delbert Hall. TD&T, Vol. 49 No. 2 (spring 2013)